posted on 2025-01-22, 00:03authored byE. Gregory McPherson, Natalie S. van Doorn, Paula J. Peper
This data publication contains urban tree growth data collected over a period of 14 years (1998-2012) in 17 cities from 13 states across the United States: Arizona, California, Colorado, Florida, Hawaii, Idaho, Indiana, Minnesota, New Mexico, New York, North Carolina, Oregon, and South Carolina.
Measurements were taken on over 14,000 urban street and park trees. Key information collected for each tree species includes bole and crown size, location, and age. Based on these measurements, 365 sets of allometric equations were developed for tree species from around the U.S. Each “set” consists of eight equations for each of the approximately 20 most abundant species in each of 16 climate regions. Tree age is used to predict a species diameter at breast height (dbh), and dbh is used to predict tree height, crown diameter, crown height, and leaf area. Dbh is also used to predict age. For applications with remote sensing, average crown diameter is used to predict dbh. There are 171 distinct species represented within this database. Some species grow in more than one region. The Urban Tree Database (UTD) contains foliar biomass data (raw data and summarized results from the foliar sampling for each species and region) that are fundamental to calculating leaf area, as well as tree biomass equations (compiled from literature) for carbon storage estimates. An expanded list of dry weight biomass density factors for common urban species is made available to assist users in using volumetric equations. Information on urban tree growth underpins models used to calculate effects of trees on the environment and human well-being. Maximum tree size and other growth data are used by urban forest managers, landscape architects and planners to select trees most suitable to the amount of growing space, thereby reducing costly future conflicts between trees and infrastructure. Growth data are used to develop correlations between growth and influencing factors such as site conditions and stewardship practices. Despite the importance of tree growth data to the science and practice of urban forestry, our knowledge is scant. Over a period of 14 years scientists with the U.S. Forest Service recorded data from a consistent set of measurements on over 14,000 trees in 17 U.S. cities. These data were originally published on 03/02/2016. The metadata was updated on 10/06/2016 to include reference to a new publication. Minor metadata updates were made on 12/15/2016. On 01/07/2020 this data publication was updated to correct a few species' names and systematic errors in the data that were found. A complete list of these changes is included (\Supplements\Errata_Jan2020_RDS-2016-0005.pdf). In addition, we have included a list of changes for the General Technical Report associated with these data (\Supplements\Errata_Jan2020_PNW-GTR-253.pdf).
These data were collected using funding from the U.S. Government and can be used without additional permissions or fees. If you use these data in a publication, presentation, or other research product please use the following citation:
McPherson, E. Gregory; van Doorn, Natalie S.; Peper, Paula J. 2016. Urban tree database. Fort Collins, CO: Forest Service Research Data Archive. Updated 21 January 2020. https://doi.org/10.2737/RDS-2016-0005
Data are from a consistent set of measurements on over 14,000 trees in these 17 U.S. cities:
Orlando, Florida
Charleston, South Carolina
Claremont, California
Modesto, California
Albuquerque, New...