Ag Data Commons
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Ag Data Commons and we can't guarantee its availability, quality, security or accept any liability.

Sweet corn: low- vs. high-yielding hybrids

dataset
posted on 2024-01-27, 04:58 authored by USDA-ARS
Transcriptional profiling of sweet corn plant density (crowding stress) tolerance influencing yield. Tolerance to crowding stress has played a crucial role in improving agronomic productivity in field corn; however, commercial sweet corn hybrids vary greatly in crowding stress tolerance. The experiment was conducted to 1) explore transcriptional changes among sweet corn hybrids with differential yield under crowding stress, 2) identify relationships between phenotypic responses and gene expression patterns, and 3) identify groups of genes associated with yield and crowding stress tolerance. Under conditions of crowding stress, three high-yielding and three low-yielding sweet corn hybrids were grouped for transcriptional and phenotypic analyses. Transcriptional analyses identified from 372 to 859 common differentially expressed genes (DEGs) for each hybrid. Large gene expression pattern variation among hybrids and only 26 common DEGs across all hybrid comparisons were identified, suggesting each hybrid has a unique response to crowding stress. Over-represented biological functions of DEGs also differed among hybrids. Strong correlation was observed between: 1) modules with up-regulation in high-yielding hybrids and yield traits, and 2) modules with up-regulation in low-yielding hybrids and plant/ear traits. Modules linked with yield traits may be important crowding stress response mechanisms influencing crop yield. Functional analysis of the modules and common DEGs identified candidate crowding stress tolerant processes in photosynthesis, glycolysis, cell wall, carbohydrate/nitrogen metabolic process, chromatin, and transcription regulation. Moreover, these biological functions were greatly inter-connected, indicating the importance of improving the mechanisms as a network. Overall design: 3 high-and 3 low-yielding hybrids with 2-3 biological replications grown under high population density (crowding stress)

History

Data contact name

BioProject Curation Staff

Publisher

National Center for Biotechnology Information

Temporal Extent Start Date

2015-09-25

Theme

  • Non-geospatial

ISO Topic Category

  • biota

National Agricultural Library Thesaurus terms

transcriptome; gene expression

Pending citation

  • No

Public Access Level

  • Public

Accession Number

PRJNA296961

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC