Optimizing sampling across methods improves the power of ecological monitoring data
dataset
posted on 2024-11-23, 21:16authored byadc Adminadc Admin, Sarah E. McCord, Nicholas P. Webb, Justin Van Zee, Ericha Courtright, Ben Billing, Michael C. Duniway, Emily Kachergis, Daniel Moriasi, Brian Morra, Aleta M. Nafus, Beth A Newingham, Drew A. Scott, David Toledo
Transect-based monitoring has long been a valuable tool in ecosystem monitoring. These transects are often used to measure multiple ecosystem attributes. The line-point intercept (LPI), vegetation height, and canopy gap intercept methods comprise a set of core methods, which provide indicators of ecosystem condition. However, users struggle to design a sampling strategy that optimizes the ability to detect ecological change using transect-based methods. We assessed the sensitivity of these core methods on a one-hectare plot to transect length, number, and sampling interval to determine: 1) minimum sampling required to describe ecosystem characteristics and detect change for each method and 2) optimal transect length and number for all three methods to make recommendations for future analyses and monitoring efforts. We used data from 13 National Wind Erosion Research Network locations spanning the western US, which included 151 measurements over time across five biomes. We found that longer and increased numbers of transects were more important for reducing sampling error than increased sample intensity along transects. For all methods and indicators across plots, three 100-m transects reduced sampling error so that indicator estimates fall within an 95% confidence interval of +/- 5% for canopy gap intercept and LPI-total foliar cover, +/- 5 cm for height and +/- two species for LPI-species counts. For the same criteria at 80% confidence intervals, two 100-m transects are needed. Site-scale inference was strongly affected by sample design, consequently our understanding of ecological dynamics may be influenced by sampling decisions.
This information is released under the Creative Commons license - Attribution - CC BY (https://creativecommons.org/licenses/by/4.0/). The consumer of these data ("Data User" herein) is required to cite it appropriately in any publication that results from its use. The Data User should realize that these data may be actively used by others for ongoing research and that coordination may be necessary to prevent duplicate publication. The Data User is urged to contact the authors of these data if any questions about methodology or results occur. Where appropriate, the Data User is encouraged to consider collaboration or co-authorship with the authors. The Data User should realize that misinterpretation of data may occur if used out of context of the original study. While substantial efforts are made to ensure the accuracy of data and associated documentation, complete accuracy of data sets cannot be guaranteed. All data are made available "as is." The Data User should be aware, however, that data are updated periodically and it is the responsibility of the Data User to check for new versions of the data. The data authors and the repository where these data were obtained shall not be liable for damages resulting from any use or misinterpretation of the data. Thank you.