Ag Data Commons
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Ag Data Commons and we can't guarantee its availability, quality, security or accept any liability.

Microbiota-derived short-chain fatty acids modulate expression of Campylobacter jejuni determinants required for commensalism and virulence

dataset
posted on 2024-01-27, 05:01 authored by PSM, USDA ARS
Campylobacter jejuni effectively promotes commensalism in the intestinal tract of avian hosts and diarrheal disease in humans, yet components of intestinal environments sensed by the bacterium in either host to initiate interactions are mostly unknown. By analyzing a C. jejuni acetogenesis mutant that is defective in both converting acetyl-CoA to acetate and commensal colonization of young chicks, we discovered evidence for C. jejuni sensing spatial gradients of microbiota-derived short-chain fatty acids (SCFAs) and organic acids to modulate expression of determinants required for commensalism. We identified in C. jejuni an SCFA-influenced regulon composed by genes encoding catabolic enzymes and transport systems for amino acids C. jejuni requires for in vivo growth. Expression of these genes was reduced in the acetogenesis mutant, but restored upon supplementation with physiological concentrations of SCFAs such as acetate and butyrate that are present in the lower intestinal tract of avian and human hosts. Conversely, the organic acid lactate, which is abundant in the upper intestinal tract of these hosts where C. jejuni less efficiently colonizes reduced expression of this regulon. We propose a model whereby C. jejuni senses microbiota-produced SCFAs and lactate for spatial orientation in the avian and human host. Sensing these metabolites likely allows C. jejuni to locate preferred niches in the lower intestinal tract and induce expression of factors required for in vivo growth. Our findings provide insights into the types of signals C. jejuni monitors in the avian host for commensalism and likely in the human host to promote diarrheal disease. Overall design: Two-condition experiment, WT C. jejuni 81-176 SmR (DRH212) and isogenic ΔCjjptaackA mutant. Biological replicates: 3 81-176 SmR and 3ΔCjjptaackA independently grown to log phase and harvested. Two technical replicates/biological replicate. One replicate per array. A type 2 gene expression experimental design was used, with fluorescently labeled genomic DNA as a reference channel in each experiment as described by Lucchini, S., et al. 2005. Infect Immun 73:88-102.

History

Data contact name

BioProject Curation Staff

Publisher

National Center for Biotechnology Information

Temporal Extent Start Date

2016-09-01

Theme

  • Non-geospatial

ISO Topic Category

  • biota

National Agricultural Library Thesaurus terms

transcriptome; gene expression

Pending citation

  • No

Public Access Level

  • Public

Accession Number

PRJNA341455

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC