Ag Data Commons
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Ag Data Commons and we can't guarantee its availability, quality, security or accept any liability.

Lasting consequences of psyllid (Bactericera cockerelli L.) infestation on tomato defense, gene expression, and growth

dataset
posted on 2024-01-27, 05:09 authored by Entomology, USDA-ARS
BACKGROUND: The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of solanaceous crops such as tomato (Solanum lycopersicum L.) in the U.S. and vectors the disease-causing pathogen ‘Candidatus Liberibacter solanacearum’. Currently, the only effective strategies for controlling the diseases associated with this pathogen involve regular pesticide applications to manage psyllid population density. However, such practices are unsustainable and will eventually lead to widespread pesticide resistance in psyllids. Therefore, new control strategies must be developed to increase host-plant resistance to insect vectors. For example, expression of constitutive and inducible plant defenses can be improved through selection. Currently, it is still unknown whether psyllid infestation has any lasting consequences on tomato plant defense or tomato plant gene expression in general. RESULTS: To characterize the genes putatively involved in tomato defense against psyllid infestation, RNA was extracted from psyllid-infested and uninfested tomato leaves (Moneymaker) three weeks post-infestation. Transcriptome analysis identified 362 differentially expressed genes. These differentially expressed genes were primarily associated with defense responses to abiotic/biotic stress, transcription/translation, cellular signaling/transport, and photosynthesis. These gene expression changes suggested that tomato plants underwent a reduction in plant growth/health in exchange for improved defense against stress that was observable three weeks after psyllid infestation. Consistent with these observations, tomato plant growth experiments determined that the plants were shorter three weeks after psyllid infestation. Furthermore, psyllid nymphs had lower survival rates on tomato plants that had been previously psyllid infested. CONCLUSION: These results suggested that psyllid infestation has lasting consequences for tomato gene expression, defense, and growth. Overall design: Comparison of transcript counts between uninfested and psyllid-infested tomato plants three weeks after treatment

History

Data contact name

BioProject Curation Staff

Publisher

National Center for Biotechnology Information

Temporal Extent Start Date

2021-01-29

Theme

  • Non-geospatial

ISO Topic Category

  • biota

National Agricultural Library Thesaurus terms

transcriptome; gene expression

Pending citation

  • No

Public Access Level

  • Public

Accession Number

PRJNA697949

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC