Horizontal gene transfer is the major driver of antimicrobial resistance in Salmonella enterica serovar Heidelberg
dataset
posted on 2024-09-29, 06:28authored byUSDA-ARS
The reported increase in antibiotic-resistant bacteria in humans has resulted in a major shift away from antibiotic use in food animal production. This shift has been driven by the assumption that removing antibiotics will select for antibiotic susceptible bacterial taxa, which in turn will allow the currently available antibiotic arsenal to be more effective. This change in practice has highlighted new questions that need to be answered to assess the effectiveness of antibiotic removal in reducing the spread of antibiotic resistance bacteria. This research demonstrates that antibiotic-susceptible Salmonella enterica serovar Heidelberg strains can acquire multidrug resistance from commensal bacteria present in the gut of neonatal broiler chicks, even in the absence of antibiotic selection. We demonstrate that exposure to acidic pH drove the horizontal transfer of antimicrobial resistance plasmids and suggest that simply removing antibiotics from food animal production might not be sufficient to limit the spread of antimicrobial resistance.
It is recommended to cite the accession numbers that are assigned to data submissions, e.g. the GenBank, WGS or SRA accession numbers. If individual BioProjects need to be referenced, state that "The data have been deposited with links to BioProject accession number PRJNA669215 in the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/)."