Growth and Yield Data for the Bushland, Texas, Winter Wheat Datasets
This dataset consists of growth and yield data for each season when winter wheat (Triticum aestivum L.) was grown for grain at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU) research weather station, Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). In each season, winter wheat was grown for grain on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The square fields are themselves arranged in a larger square with the fields in four adjacent quadrants of the larger square. Fields and lysimeters within each field are thus designated northeast (NE), southeast (SE), northwest (NW), and southwest (SW). Irrigation was by linear move sprinkler system. Irrigation protocols described as full were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe to 2.4-m depth in the field. Irrigation protocols described as deficit typically involved irrigations to establish the crop early in the season, followed by reduced or absent irrigations later in the season (typically in the later winter and spring). The growth and yield data include plant population density, height (except in 1989-1990), plant row width, leaf area index, growth stage, total above-ground biomass, leaf and stem biomass, head mass (when present), kernel number, and final yield. Data are from replicate samples in the field and non-destructive (except for final harvest) measurements on the weighing lysimeters. In most cases yield data are available from both manual sampling on replicate plots in each field and from machine harvest. These datasets originate from research aimed at determining crop water use (ET), crop coefficients for use in ET-based irrigation scheduling based on a reference ET, crop growth, yield, harvest index, and crop water productivity as affected by irrigation method, timing, amount (full or some degree of deficit), agronomic practices, cultivar, and weather. Prior publications have focused on winter wheat ET, crop coefficients, and crop water productivity. Crop coefficients have been used by ET networks. The data have utility for testing simulation models of crop ET, growth, and yield and have been used by the Agricultural Model Intercomparison and Improvement Project (AgMIP) and by many others for testing, and calibrating models of ET that use satellite and/or weather data.
Resources in this dataset:
Resource Title: 1989-1990 Bushland, TX, west winter wheat growth and yield data.
File Name: 1989-1990_West_Wheat_Growth_and_Yield.xlsx
Resource Description: This dataset consists of growth and yield data the 1989-1990 winter wheat (Triticum aestivum L.) season at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU) research weather station, Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). Winter wheat was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The two square fields were themselves arranged with one directly north of and contiguous with the other. Fields and lysimeters within each field were designated northwest (NW), and southwest (SW). Irrigation was by linear move sprinkler system. Irrigations described as full were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe to 2.4-m depth in the field. Irrigation described as deficit typically involved irrigation to establish the crop in the autumn followed by reduced or no irrigation later in the late winter or spring. The growth and yield data include plant height (except in 1989-1990), leaf area index, growth stage, total above-ground biomass, leaf and stem biomass, hea biomass, and final yield. Data are from replicate samples in the field and non-destructive (except for final harvest) measurements on the weighing lysimeters. In most cases yield data are available from both manual sampling on replicate plots in each field and from machine harvest. There is a single spreadsheet for the west (NW and SW) lysimeters and fields. The spreadsheets contain tabs for data and corresponding tabs for data dictionaries. Typically, there are separate data tabs and corresponding dictionaries for plant growth during the season, crop growth stage, plant population, manual harvest from replicate plots in each field and from lysimeter surfaces, and machine (combine) harvest, An Introduction tab explains the tab names and contents, lists the authors, explains conventions, and lists some relevant references.
Resource Title: 1991-1992 Bushland, TX, east winter wheat growth and yield data.
File Name: 1991-1992_East_Wheat_Growth_and_Yield.xlsx
Resource Description: This dataset consists of growth and yield data the 1991-1992 winter wheat (Triticum aestivum L.) season at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU) research weather station, Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). Winter wheat was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The two square fields were themselves arranged with one directly north of and contiguous with the other. Fields and lysimeters within each field were designated northeast (NE), and southeast (SE). Irrigation was by linear move sprinkler system. Irrigations described as full were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe to 2.4-m depth in the field. Irrigation described as deficit typically involved irrigation to establish the crop in the autumn followed by reduced or no irrigation later in the late winter or spring. The growth and yield data include plant height, leaf area index, growth stage, total above-ground biomass, leaf and stem biomass, hea biomass, and final yield. Data are from replicate samples in the field and non-destructive (except for final harvest) measurements on the weighing lysimeters. In most cases yield data are available from both manual sampling on replicate plots in each field and from machine harvest. There is a single spreadsheet for the east (NE and SE) lysimeters and fields. The spreadsheets contain tabs for data and corresponding tabs for data dictionaries. Typically, there are separate data tabs and corresponding dictionaries for plant growth during the season, crop growth stage, plant population, manual harvest from replicate plots in each field and from lysimeter surfaces, and machine (combine) harvest, An Introduction tab explains the tab names and contents, lists the authors, explains conventions, and lists some relevant references.
Resource Title: 1992-1993 Bushland, TX, west winter wheat growth and yield data.
File Name: 1992-1993_W_Wheat_Growth_and_Yield.xlsx
Resource Description: This dataset consists of growth and yield data the 1992-1993 winter wheat (Triticum aestivum L.) season at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU) research weather station, Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). Winter wheat was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. The two square fields were themselves arranged with one directly north of and contiguous with the other. Fields and lysimeters within each field were designated northwest (NW), and southwest (SW). Irrigation was by linear move sprinkler system. Irrigations described as full were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe to 2.4-m depth in the field. Irrigation described as deficit typically involved irrigation to establish the crop in the autumn followed by reduced or no irrigation later in the late winter or spring. The growth and yield data include plant height, leaf area index, growth stage, total above-ground biomass, leaf and stem biomass, hea biomass, and final yield. Data are from replicate samples in the field and non-destructive (except for final harvest) measurements on the weighing lysimeters. In most cases yield data are available from both manual sampling on replicate plots in each field and from machine harvest. There is a single spreadsheet for the west (NW and SW) lysimeters and fields. The spreadsheets contain tabs for data and corresponding tabs for data dictionaries. Typically, there are separate data tabs and corresponding dictionaries for plant growth during the season, crop growth stage, plant population, manual harvest from replicate plots in each field and from lysimeter surfaces, and machine (combine) harvest, An Introduction tab explains the tab names and contents, lists the authors, explains conventions, and lists some relevant references.
Funding
USDA-ARS: 3090-13000-015-00D
History
Data contact name
Evett, Steven R.Data contact email
steve.evett@usda.govPublisher
Ag Data CommonsIntended use
These data may be used to test and calibrate models of plant growth, water use (ET), and yield, and may be used to develop crop coefficients for use with a reference evapotranspiration model to estimate crop water use. Care was taken to ensure that lysimeter ET data were representative of the 4.4 ha fields within which each lysimeter was centered. Therefore, satellite data with 100-m or smaller pixels may be suitable for use with the lysimeter data in testing and calibration of models based on satellite data.Use limitations
The data pertain to the specific location, soil, climate, cultivar, and agronomic practices described in the data sets. Extrapolation to other climates, soils, cultivars, and practices should be done with care. Individual fields were square and somewhat larger than 210 m in width and length, so care should be used when combining satellite data with these data if satellite image pixels are large. Observations of air temperature and relative humidity, wind speed, and solar irradiance taken at the lysimeters should not be used as weather input for simulation models; weather data observed under standard conditions at the research weather station should be used as input to simulation models. Plant growth and yield data are from replicate plots in each of the four lysimeter fields. Examination of the data variance should be examined to determine in there are clear differences in data from different fields. Number of replicates and plot sizes may have changed between seasons but are given in the data files.Temporal Extent Start Date
1989-01-01Temporal Extent End Date
1993-12-31Frequency
- irregular
Theme
- Not specified
Geographic Coverage
{"type":"FeatureCollection","features":[{"geometry":{"type":"Polygon","coordinates":[[[-102.09906463948,35.191719970106],[-102.07671433134,35.19121493622],[-102.07678299485,35.1865853205],[-102.07609634934,35.177044674547],[-102.09913330298,35.177072738625],[-102.09906463948,35.191719970106]]]},"type":"Feature","properties":{}}]}ISO Topic Category
- climatologyMeteorologyAtmosphere
- farming
- geoscientificInformation
National Agricultural Library Thesaurus terms
Texas; data collection; Agricultural Research Service; lysimeters; microirrigation; soil water; soil profiles; water content; neutron probes; population density; leaf area index; developmental stages; aboveground biomass; leaves; mechanical harvesting; crop coefficient; irrigation scheduling; harvest index; plant cultural practices; cultivars; simulation models; satellites; meteorological data; evapotranspiration; winter wheat; Triticum aestivumOMB Bureau Code
- 005:18 - Agricultural Research Service
OMB Program Code
- 005:040 - National Research
ARS National Program Number
- 211
Primary article PubAg Handle
Pending citation
- No
Related material without URL
Howell, T.A., J.A. Tolk, S.R. Evett, K.S. Copeland and D.A. Dusek. 2007. Evapotranspiration of deficit irrigated sorghum and winter wheat. Pp. 223-239 In The Role of Irrigation and Drainage in a Sustainable Future, USCID Fourth International Conference on Irrigation and Drainage, Sacramento, California, October 3-6, 2007. U.S. Committee on Irrigation and Drainage, Denver, Colorado USA. Evett, S. R., Howell, T. A., Schneider, A. D., Copeland, K. S., and Dusek, D. A. 1994. Energy and water balance modeling of winter wheat. ASAE Paper No. 94-2022.Public Access Level
- Public