Data from: Proteomics analysis reveals novel host molecular mechanisms associated with thermotherapy of 'Ca. Liberibacter asiaticus'-infected citrus plants
Background Citrus Huanglongbing (HLB), which is linked to the bacterial Candidatus pathogen 'Ca. Liberibacter asiaticus' (Las), is the most devastating disease of citrus plants, and longer-term control measures via breeding or genetic engineering have been unwieldy because all cultivated citrus species are susceptible to the disease. However, the degree of susceptibility varies among citrus species, which has prompted efforts to identify potential Las resistance/tolerance-related genes in citrus plants for application in breeding or genetic engineering programs. Plant exposure to one form of stress has been shown to serendipitously induce innate resistance to other forms of stress and a recent study showed that continuous heat treatment (40 to 42 °C) reduced Las titer and HLB-associated symptoms in citrus seedlings. The goal of the present study was to apply comparative proteomics analysis via 2-DE and mass spectrometry to elucidate the molecular processes associated with heat-induced mitigation of HLB in citrus plants. Healthy or Las-infected citrus grapefruit plants were exposed to room temperature or to continuous heat treatment of 40 °C for 6 days.
Results An exhaustive total protein extraction process facilitated the identification of 107 differentially-expressed proteins in response to Las and/or heat treatment, which included a strong up-regulation of chaperones including small (23.6, 18.5 and 17.9 kDa) heat shock proteins, a HSP70-like protein and a ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)-binding 60 kDa chaperonin, particularly in response to heat treatment. Other proteins that were generally down-regulated due to Las infection but up-regulated in response to heat treatment include RuBisCO activase, chlorophyll a/b binding protein, glucosidase II beta subunit-like protein, a putative lipoxygenase protein, a ferritin-like protein, and a glutathione S-transferase.
Conclusions The differentially-expressed proteins identified in this study highlights a premier characterization of the molecular mechanisms potentially involved in the reversal of Las-induced pathogenicity processes in citrus plants and are hence proposed targets for application towards the development of cisgenic Las-resistant/tolerant citrus plants.
Resources in this dataset:
Resource Title: Appendix 1. Mascot match results and peptide sequences of the 130 differentially-expressed spots - Download Excel.
File Name: 12870_2016_942_MOESM1_ESM.xlsx, url: https://static-content.springer.com/esm/art:10.1186/s12870-016-0942-x/MediaObjects/12870_2016_942_MOESM1_ESM.xlsx
Funding
USDA-ARS: 2034-22000-010-00D
History
Data contact name
Lin, HongData contact email
hong.lin@ars.usda.govPublisher
BMC Plant BiologyIntended use
To identify potential Las resistance/tolerance-related genes in citrus plants for application in breeding or genetic engineering programs, and apply comparative proteomics analysis via 2-DE and mass spectrometry to elucidate the molecular processes associated with heat-induced mitigation of HLB in citrus plants.Theme
- Not specified
ISO Topic Category
- biota
- farming
National Agricultural Library Thesaurus terms
proteomics; thermotherapy; Citrus; Candidatus Liberibacter asiaticus; ambient temperature; binding proteins; breeding; chaperonins; chlorophyll; cisgenic plants; control methods; genes; genetic engineering; glutathione transferase; grapefruits; greening disease; heat shock proteins; heat treatment; lipoxygenase; mass spectrometry; pathogenicity; pathogens; protein content; ribulose-bisphosphate carboxylase; ribulose-bisphosphate carboxylase activase; seedlings; pathogenesis-related proteinsOMB Bureau Code
- 005:18 - Agricultural Research Service
OMB Program Code
- 005:040 - National Research
Primary article PubAg Handle
Pending citation
- No
Public Access Level
- Public