Ag Data Commons
Browse

Data from: Genome of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae), a worldwide parasite of social bee colonies, provides insights into detoxification and herbivory

dataset
posted on 2024-02-13, 13:26 authored by Jay D. Evans, Duane McKenna, Erin D. Scully, Steven C. Cook, Benjamin Dainat, Noble Egekwu, Nathaniel Grubbs, Dawn Lopez, Marcé D. Lorenzen, Steven M. Reyna, Frank D. Rinkevich, Peter Neumann, Qiang Huang

The small hive beetle (Aethina tumida, ATUMI) is an invasive parasite of bee colonies. ATUMI feeds on both fruits and bee nest products, facilitating its spread and increasing its impact on honey bees and other pollinators. The ATUMI genome has been sequenced and annotated, providing the first genomic resources for this species and for the Nitidulidae, a beetle family that is closely related to the extraordinarily species-rich clade of beetles known as the Phytophaga. ATUMI thus provides a contrasting view as a neighbor for one of the most successful known animal groups. A robust genome assembly and a gene set possessing 97.5% of the core proteins known from the holometabolous insects are presented. The ATUMI genome encodes fewer enzymes for plant digestion than the genomes of wood-feeding beetles, but nonetheless shows signs of broad metabolic plasticity. Gustatory receptors are few in number compared to other beetles, especially receptors with known sensitivity (in other beetles) to bitter substances. In contrast, several gene families implicated in detoxification of insecticides and adaptation to diverse dietary resources show increased copy numbers. The presence and diversity of homologs involved in detoxification differs substantially from the bee hosts of ATUMI. Results provide new insights into the genomic basis for local adaption and invasiveness in ATUMI, and a blueprint for control strategies that target this pest without harming their honey bee hosts. A minimal set of gustatory receptors is consistent with the observation that, once a host colony is invaded, food resources are predictable. Unique detoxification pathways and pathway members can help identify which treatments might control this species even in the presence of honey bees, which are notoriously sensitive to pesticides.


Resources in this dataset:

  • Resource Title: Supporting data for the "Genome of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae), a worldwide parasite of social bee colonies, provides insights into detoxification and herbivory".

    File Name: Web Page, url: http://gigadb.org/dataset/100511

    The small hive beetle (Aethina tumida, ATUMI) is an invasive parasite of bee colonies. ATUMI feeds on both fruits and bee nest products, facilitating its spread and increasing its impact on honey bees and other pollinators. We have sequenced and annotated the ATUMI genome, providing the first genomic resources for this species and for the Nitidulidae, a beetle family that is closely related to the extraordinarily species-rich clade of beetles known as the Phytophaga. ATUMI thus provides a contrasting view as a neighbor for one of the most successful known animal groups. We present a robust genome assembly and a gene set possessing 97.5% of the core proteins known from the holometabolous insects. The ATUMI genome encodes fewer enzymes for plant digestion than the genomes of wood-feeding beetles, but nonetheless shows signs of broad metabolic plasticity. Gustatory receptors are few in number compared to other beetles, especially receptors with known sensitivity (in other beetles) to bitter substances. In contrast, several gene families implicated in detoxification of insecticides and adaptation to diverse dietary resources show increased copy numbers. The presence and diversity of homologs involved in detoxification differs substantially from the bee hosts of ATUMI. Our results provide new insights into the genomic basis for local adaption and invasiveness in ATUMI, and a blueprint for control strategies that target this pest without harming their honey bee hosts. A minimal set of gustatory receptors is consistent with the observation that, once a host colony is invaded, food resources are predictable. Unique detoxification pathways and pathway members can help identify which treatments might control this species even in the presence of honey bees, which are notoriously sensitive to pesticides.

Funding

USDA-NIFA: 2017–06481

History

Data contact name

Evans, Jay D.

Data contact email

jay.evans@ars.usda.gov

Publisher

GigaScience

Intended use

Genomic and transcriptomic data can lead to basic insights into the small hive beetle's biology, and to potential control methods for this widespread parasite of honey bee colonies.

Temporal Extent Start Date

2018-01-01

Temporal Extent End Date

2018-12-31

Theme

  • Not specified

Geographic Coverage

{"type":"FeatureCollection","features":[{"geometry":{"type":"Polygon","coordinates":[[[-174.375,-83.359511330355],[-174.375,85.008486417721],[195.46875,85.008486417721],[195.46875,-83.359511330355],[-174.375,-83.359511330355]]]},"type":"Feature","properties":{}}]}

ISO Topic Category

  • biota
  • farming

National Agricultural Library Thesaurus terms

Aethina tumida; parasites; herbivores; fruits; nests; honey bees; pollinators; genomics; animals; genome assembly; genes; enzymes; digestion; plasticity; taste; receptors; insecticides; hosts; pollination; Apis mellifera; glycosides; invasive species; insect pests; beehives; bee diseases; honey bee colonies; Phytophaga

OMB Bureau Code

  • 005:18 - Agricultural Research Service

OMB Program Code

  • 005:040 - National Research

ARS National Program Number

  • 305

Primary article PubAg Handle

Pending citation

  • No

Public Access Level

  • Public

Preferred dataset citation

Evans, Jay D.; McKenna, Duane; Scully, Erin D.; Cook, Steven C.; Dainat, Benjamin; Egekwu, Noble; Grubbs, Nathaniel; Lopez, Dawn; Lorenzen, Marcé D.; Reyna, Steven M.; Rinkevich, Frank D.; Neumann, Peter; Huang, Qiang (2018). Data from: Genome of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae), a worldwide parasite of social bee colonies, provides insights into detoxification and herbivory. GigaScience.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC